Consecutive tuples of multiplicatively dependent integers
نویسندگان
چکیده
This paper is concerned with the existence of consecutive pairs and triples multiplicatively dependent integers. A theorem by LeVeque on Pillai's equation implies that only integers larger than 1 are (2,8) (3,9). For triples, we prove following theorem: If a∉{2,8} a fixed integer 1, then there finitely many (a,b,c) pairwise distinct such (a,b,c), (a+1,b+1,c+1) (a+2,b+2,c+2) each dependent. Moreover, these can be determined effectively.
منابع مشابه
Sums of Consecutive Integers
Wai Yan Pong ([email protected]) received his B.Sc. from the Chinese University of Hong Kong and his M.Sc. and Ph.D. from the University of Illinois at Chicago. He was a Doob Research Assistant Professor at the University of Illinois at Urbana-Champaign for three years. He then moved to California and is now teaching at California State University, Dominguez Hills. His research interests are in m...
متن کاملPrime factors of consecutive integers
This note contains a new algorithm for computing a function f(k) introduced by Erdős to measure the minimal gap size in the sequence of integers at least one of whose prime factors exceeds k. This algorithm enables us to show that f(k) is not monotone, verifying a conjecture of Ecklund and Eggleton.
متن کاملLinear Combinations of Sets of Consecutive Integers
Let k-l,ml,..~+k denote non-negative integers, and suppose the greatest common divisor of ml,...,mk is 1 . We show that if '1, "',sk are sufficiently long blocks of consecutive integers, then the set mlSl+ . ..+mkSk contains a sizable block of consecutive integers. For example; if m and n are relatively prime natural numbers, and U, U ? Vt V are integers with U-u 2 n-l , V-v 2 m-l 1 then the se...
متن کاملOn the Product of Consecutive Integers
of k consecutive integers is never an l-th power if k > 1, 1 > 1 2 ) . RIGGE 3 ) and a few months later I 1 ) proved that Ak(n) is never a square, and later RIDGE and 14) proved using the Thue-Siegel theorem that for every l > 2 there exists a k0(l) so that for every k > k0(l) A k(n) is not an l-th power. In 1940 SIEGEL and I proved that there is a constant c so that for k > c, l > 1 A k(n) is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2021
ISSN: ['0022-314X', '1096-1658']
DOI: https://doi.org/10.1016/j.jnt.2021.07.021